Calculadora de Desigualdades de Valor Absoluto
Resuelve desigualdades de valor absoluto con pasos
Cómo Usar
- Selecciona el tipo de desigualdad (< o >)
- Ingresa el valor 'a' en |x - a|
- Ingresa la constante 'b' (debe ser positiva)
- Haz clic en calcular para ver la solución y la notación de intervalo
¿Qué son las Desigualdades de Valor Absoluto?
Las desigualdades de valor absoluto involucran el valor absoluto de una expresión variable comparada con una constante. El valor absoluto |x| representa la distancia desde cero en una recta numérica, siempre positivo o cero.
Dos Tipos Principales
Menor Que: |x - a| < b significa que x está dentro de b unidades de a
Mayor Que: |x - a| > b significa que x está a más de b unidades de distancia de a
Cómo Resolver Desigualdades de Valor Absoluto
Tipo 1: |x - a| < b
Esto crea una desigualdad compuesta:
Paso 1: Escribe como -b < x - a < b
Paso 2: Suma a a todas las partes: -b + a < x < b + a
Ejemplo: |x - 3| < 5 se convierte en -5 < x - 3 < 5, entonces -2 < x < 8
Tipo 2: |x - a| > b
Esto crea dos desigualdades separadas:
Paso 1: Escribe como x - a < -b O x - a > b
Paso 2: Resuelve cada una: x < a - b O x > a + b
Ejemplo: |x - 3| > 5 da x < -2 O x > 8
Notación de Intervalo
La notación de intervalo proporciona una forma compacta de expresar conjuntos de soluciones:
Símbolos
- (a, b) - Intervalo abierto: valores entre a y b, sin incluir los extremos
- [a, b] - Intervalo cerrado: valores entre a y b, incluyendo los extremos
- ∪ - Unión: combina dos o más intervalos
- ∞ - Infinito: se extiende sin límite
Ejemplos
-2 < x < 8 → (−2, 8)
x < -2 o x > 8 → (−∞, −2) ∪ (8, ∞)
Aplicaciones en el Mundo Real
Las desigualdades de valor absoluto modelan situaciones que involucran tolerancia, márgenes de error y rangos aceptables:
Usos Comunes
- Manufactura: Las dimensiones de las piezas deben estar dentro de la tolerancia (ej., |d - 5| < 0.02 cm)
- Control de Temperatura: Temperatura ambiente mantenida dentro de un rango
- Control de Calidad: Pesos de productos dentro de límites aceptables
- Física: Incertidumbre de medición y límites de error
- Estadística: Intervalos de confianza y desviaciones estándar
Preguntas frecuentes
- ¿Cuál es la diferencia entre |x - a| < b y |x - a| > b?
- Menor que (<) da un intervalo continuo único de valores entre dos límites, mientras que mayor que (>) da dos intervalos separados que se extienden hacia afuera desde dos límites. Piensa en < como 'cerca de a' y > como 'lejos de a'.
- ¿Por qué la constante b debe ser positiva?
- Como los valores absolutos siempre son no negativos, compararlos con un número negativo crea declaraciones imposibles (<) o siempre verdaderas (>). Una constante positiva asegura soluciones significativas.
- ¿Cómo sé qué tipo de desigualdad usar?
- Usa < cuando quieras valores dentro de cierta distancia de un punto, y usa > cuando quieras valores fuera de cierta distancia. Por ejemplo, temperatura dentro de ±5° usa <, mientras que evitar una zona de peligro usa >.
- ¿Qué significa la notación de intervalo (a, b)?
- Los paréntesis indican intervalos abiertos que no incluyen los extremos. Entonces (−2, 8) significa todos los números entre −2 y 8, pero no −2 u 8 mismos. Los corchetes [ ] incluirían los extremos.